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Abstract 
 

Robotic vehicles that navigate autonomously are hindered by unnecessary avoidance of 
soft obstacles, and entrapment by potentially avoidable obstacles. Existing sensing 
technologies fail to reliably distinguish hard obstacles from soft obstacles, as well as 
impassable thickets and other sources of entrapment. Automated materials classification 
through advanced sensing methods may provide a means to identify such obstacles, and 
from their identity, to determine whether they must be avoided. 
 
Multi- and hyper-spectral electro-optic sensors are used in remote sensing applications to 
classify both man-made and naturally occurring materials on the earth’s surface by their 
reflectance spectra. The applicability of this sensing technology to obstacle identification 
for autonomous ground vehicle navigation is the focus of this report. The analysis is 
restricted to system concepts in which the multi- or hyper-spectral sensor is on-board the 
ground vehicle, facing forward to detect and classify obstacles ahead of the vehicle. 
Obstacles of interest include various types of vegetation, rocks, soils, minerals, and 
selected man-made materials such as paving asphalt and concrete. 
 
 
 

This work was sponsored by Lockheed-Martin Missile and Fire Control, 
under shared vision agreement number SC99/01573 for Ground Autonomy 
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Nomenclature 
 
VIS  visible (i.e. visible spectrum) 
NIR  near infrared 
SWIR  short-wave infrared 
MWIR  medium-wave infrared 
LWIR  long-wave infrared 
CCD  charge coupled device 
CIR  color-infrared 
NDI  normalized difference index 
NDVI  normalized difference vegetation index 
ROC  receiver operating characteristic 
Si  silicon 
InGaAs Indium Gallium Arsenide 
InSb  Indium Lead 
FOV  field of view 
LED light emitting diode 
6S Second Simulation of Satellite Signal in the Solar Spectrum 

atmospheric simulation software code 
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Introduction 
This report documents efforts conducted under a Sandia National Laboratories and 
Lockheed-Martin Company joint vision project for improving autonomous ground 
vehicle navigation. Autonomous ground vehicles that utilize existing sensing 
technologies such as video cameras, laser radars, or tactile sensors for navigation are 
hindered by unnecessary avoidance of soft obstacles, and entrapment by potentially 
avoidable obstacles. Existing sensing technologies fail to reliably distinguish hard 
obstacles from soft obstacles, as well as impassable thickets and other sources of 
entrapment. Materials classification may provide a means to identify such obstacles, and 
from their identity, to determine whether they must be avoided. 
 
Multi- and hyper-spectral electro-optic sensors are used in remote sensing applications to 
classify both man-made and naturally occurring materials on the earth’s surface by their 
reflectance spectra. The applicability of this sensing technology to obstacle identification 
for autonomous ground vehicle navigation is the focus of this report. The analysis is 
restricted to system concepts in which the multi- or hyper-spectral sensor is on-board the 
ground vehicle, facing forward to detect and classify obstacles ahead of the vehicle. 
Obstacles of interest include various types of vegetation, rocks, soils, minerals, and a few 
man-made materials such as paving asphalt and concrete. 
  
 
Spectral Bands for Remote Sensing 
The primary regions of the Electro-Magnetic (EM) spectrum used by electro-optic 
sensors for earth remote sensing are shown in Table 1 [1]. The wavelength bands are 
determined by atmospheric windows, which are bracketed by regions of low atmospheric 
transmittance due to absorption by atmospheric gases. Small variations in the band ranges 
can be found in different references because the boundaries of some atmospheric 
windows are not distinct. 
 

Table 1. The primary spectral bands used in earth remote sensing. 

Band name Wavelength 
range Radiation source Surface property

of interest 
Visible (VIS) 0.4 – 0.7 µm Solar Reflectance 

Near InfraRed (NIR) 0.7 – 1.1 µm Solar Reflectance 

Short Wave 
InfraRed (SWIR) 

1.1 – 1.35 µm 
1.4 – 1.8 µm 
2 – 2.5 µm 

Solar Reflectance 

Mid Wave InfraRed 
(MWIR) 

3 – 4 µm 
4.5 – 5 µm Solar, Thermal Reflectance, 

Temperature 
Thermal InfraRed 

(TIR) 
8 – 9.5 µm 
10 – 14 µm Thermal Temperature 
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All materials with temperatures above absolute zero (0oK) emit thermal radiation. An 
ideal blackbody emits thermal radiation according to Planck’s blackbody equation. In 
general, most materials are graybodies whose emission spectra are those of a blackbody 
modified by a wavelength-dependent emissivity function. In daylight, materials also 
reflect solar radiation in a wavelength-dependent fashion. The reflectance spectrum of a 
material depends upon its chemical properties and physical structure, and the spectrum of 
the illuminant. 
 
All materials passively absorb and reflect solar radiation in the visible (VIS) through 
short wave infrared (SWIR) bands. In daylight, reflected radiation from materials on the 
earth’s surface in these bands is substantially stronger than self-emitted radiation from the 
same materials due to their absolute temperature. Conversely, in the thermal infrared 
(TIR) band, self-emitted radiation is substantially stronger than reflectance. Thus, in the 
VIS through SWIR bands, the property of interest is primarily reflectance, whereas, in the 
TIR band, the property of interest is temperature arising from self-emission. In the mid 
wave infrared (MWIR) band, reflected and emitted radiation exhibit roughly equal 
strength from surface materials and are difficult to unmix. 
 
Emissivity functions must provide distinctive signatures in order to be useful for the 
identification of materials by self-emission. Unfortunately, a plant leaf can exhibit 
hundreds of different emissivity functions across its surface [2]. Thus, the spectral 
character of emitted radiation is too variable for the identification of vegetation types. 
This means that the TIR band is of little use in the materials identification problem. 
 
The reflectance spectrum of a material is a function of the spectral characteristics of the 
illuminant modified by the surface properties and molecular structure of the material. The 
chemical constituents and molecular bonds that bind them create absorption features that 
form a unique spectral signature. The illuminant must be characterized, however, in order 
to discount its contribution to the overall spectral shape.  
 
In remote sensing, solar radiation modified by atmospheric absorption is the source of 
illumination. Identification of materials on the earth’s surface is conducted primarily in 
the VIS through SWIR (0.4µm through 2.5µm) bands. The MWIR bands are primarily 
used for analyzing atmospheric gases. 
 

Solar Exitance and Atmospheric Transmittance 
Direct solar radiation received above the earth’s atmosphere has a constant and known 
spectral content. A Second Simulation of Satellite Signal in the Solar Spectrum (6S) 
atmospheric modeling code simulation in the visible through short-wave bands is shown 
in Figure 1. The solar irradiation spectrum peaks at around 0.5µm in the figure and 
decreases monotonically with increasing wavelength [3]. 
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Figure 1. 6S modeling software simulation of exo-atmospheric solar spectral 
irradiance. 
 
The solar spectrum observed at ground level is modified by atmospheric absorption and 
scattering. The fraction that arrives at a location on earth is called the solar path 
transmittance, ( )λτ s , which is a strong function of wavelength. An example of direct 
solar radiation seen at the earth’s surface in a desert region with low concentrations of 
atmospheric aerosols is simulated in Figure 2. The molecular absorption bands of 
atmospheric H2O and CO2 cause deep absorption features that can be seen in the figure. 
Two bands near 1.4µm and 1.9µm can completely block the transmission of radiation. 
The absence of transmittance in these regions precludes their use in obtaining reflectance 
information and those wavelengths. Other H2O absorption bands near 0.9µm and 1.1µm 
are narrower and less deep. These regions yield reflectance values that are strongly 
dependent on the amount of water vapor in the atmosphere. 
 
The observant reader may note that the transmittance curve in Figure 2 lacks the convex 
upward shape (i.e. curving downward at the wavelength extremes) often seen in 
textbooks. The difference here is due to the lower concentration of atmospheric aerosols 
characteristic of desert regions. 
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Figure 2. 6S simulation of atmospheric transmittance in the VIS through SWIR 
spectral bands for a desert region with low atmospheric aerosols. 
 
Solar radiation is also received on the ground indirectly through skylight radiation, which 
is scattered downward by the atmosphere. Skylight radiation is the reason that shadows 
seen on the earth’s surface are not completely black. 
 
The spectral reflectance of plants and other materials found at the earth’s surface can be 
characterized under laboratory conditions. However, the observed reflectance when 
illuminated by solar irradiation under the influence of the atmosphere and clouds will 
yield substantial variations in spectral shape compared to the laboratory model. Thus, 
materials identification strategies employed in remote sensing must either be inherently 
insensitive to spectral variations due to atmospheric effects, or the atmospheric effects 
must be measured and removed from the reflectance measurements in order to obtain 
consistent signatures. Features within these reflectance signatures must ultimately be 
relatable to those observed in laboratory data. 
 
Reflectance Spectra Databases and Material Classes 
A number of spectral libraries are available in the open literature. The primary emphasis 
of many of these libraries is geological. As such, they contain laboratory spectra for a 
variety of soils, rocks and minerals. A few spectral libraries contain laboratory spectra for 
materials such as vegetation, water, and man-made materials. 
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The following spectral libraries were utilized for obtaining the results presented in this 
report: 

• U.S. Geological Survey (USGS) vegetation spectral library [5] 

• Published Dry Plant Material Spectra (PDPMS) library [6] 

• Jasper Ridge Spectral Library (JRSL) library for green vegetation, 
dry vegetation, and rocks 

• USGS mineral spectral library [5] 

• Jet Propulsion Laboratory (JPL) mineral spectral libraries [7] 

• John Hopkins University (JHU) spectral library [8-11] 

• Nonconventional Exploitation Factors Data System (NEFDS) 9.1 
spectral library [12] 

 
The range and spacing of wavelengths over which the library measurements were taken 
differed among the databases. The data of interest for this report were those that spanned 
the 0.4µm to 2.4µm wavelength range with measurements at 0.1µm spacing. The fine 
spacing was needed to match the wavelength resolution of modern hyperspectral sensors. 
Linear interpolation was used to construct data at the desired wavelengths when 
laboratory measurements were finer than 0.01µm but straddled the desired wavelengths. 
Those library instances that lacked data in the desired wavelengths were removed from 
consideration. 
 
The remaining data were then grouped into seven materials classes – vegetation, soils, 
rocks, minerals, man-made materials, water, and chemical constituents of plant materials. 
The materials classes, number of instances in each class, and the spectral libraries from 
which the instances were drawn, are listed in Table 2. The short (five-letter) tag names 
listed in the table were assigned to each class for convenience. 
 

Table 2. Material classes and the databases from which material instances were 
drawn. The codes are five-letter shorthand names for the material classes. 

Material Class Tag Instances Spectral Libraries 
Vegetation flora 97 USGS vegetation, PDPMS, JRSL 
Soils soils 25 JHU 
Rocks rocks 135 JHU 
Minerals miner 479 USGS minerals 
Man-made materials mmade 29 JHU, NEFDS 
Water water 9 USGS minerals, JHU, NEFDS 
Chemical constituents chems 15 PDPMS 

 
The chemical constituents materials class contains substances extracted from plant 
material such as cellulose and lignin that exhibit reflectance spectra indicative of plant 
chemistry. They would not be expected to exist in isolation under remote sensing 
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conditions. Thus, they are useful for analytical purposes but not as exemplars for 
materials discrimination. 

Problem Wavelengths Due to Atmosphere 
It is important to consider that library reflectance spectra do not include the effects of 
atmospheric transmittance. Although there might be a unique spectral feature in the 
library reflectance spectrum of a particular material, if that feature occurs at wavelength 
where there is substantial attenuation due to atmospheric absorption, the feature will 
either be too weak to be measured, or simply unreliable due to high variability with 
atmospheric conditions. Potentially problematic atmospheric absorption feature 
wavelengths in the 0.4µm to 2.4µm range are listed in Table 3. Values in the table are 
rounded to the nearest 0.1µm for convenience. 
 
Oxygen absorbs at 0.76µm in a narrow feature and carbon dioxide absorbs at 2.01µm and 
2.06µm, plus a weak doublet near 1.6µm. Water causes most of the remaining absorption 
features throughout the spectrum and hides additional weaker absorptions from other 
gases [4]. The first of two wide-and-deep water absorption features occur approximately 
in the region 1.31µm to 1.50µm, which is shaded gray in the table. The second occurs in 
the region 1.75µm to 2.06µm, which is shaded in light blue. These absorption feature 
regions have wide bottoms and sharply sloping edges. The bottom regions and adjacent 
edge regions are delineated in the table. A third feature region begins at approximately 
2.35µm and slopes downward in reflectance toward 2.4µm. The exact boundaries of the 
wide absorption regions are arguable. They depend on how far down the sloping edges of 
the broad absorption regions one chooses to establish them. Thus, the wavelength ranges 
of the broad absorption features should only be considered approximations. 

Table 3. Atmospheric absorption feature wavelengths in the 0.4µm to 2.4µm range. 

Wavelength (µm) Band Absorption features Shape Depth 
0.72 NIR CO2 Narrow Shallow 
0.76 NIR O2 Narrow Moderate 
0.81 NIR CO2 Narrow Shallow 

0.94-0.97 NIR H2O Moderate Moderate 
1.13-1.17 SWIR I H2O Moderate Moderate 
1.31-1.35 SWIR I H2O, CO2 Edge Border Deep 
1.36-1.39 - H2O, CO2 Broad Deep 
1.40-1.50 SWIR II H2O, CO2 Edge Border Deep 

1.6 SWIR II CO2 Doublet Shallow 
1.75-1.80 SWIR II H2O, CO2 Broad Border Deep 
1.81-1.94 - H2O, CO2 Broad Deep 
1.95-2.00 - H2O, CO2 Broad Border Deep 

2.01 SWIR III CO2 Narrow Border Deep 
2.02-2.05 SWIR III H2O Edge Border Deep 

2.06 SWIR III CO2 Narrow Border Deep 
2.35-2.40 SWIR III H2O Edge Border Deep 
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Wavelength ranges that represent deep absorption features in the table, may yield 
reflectance values that are too small to measure. Wavelengths that border deep absorption 
troughs have high variability and are difficult to utilize in an absolute sense. However, 
they can be of some use in relative comparisons of absorption levels in pixel 
neighborhoods within a given scene. Wavelengths that have shallow features can be used 
cautiously if measurements are averaged over broad wavelength windows. 
 
Spectral Features of Material Classes 
In this section, we examine the reflectance spectra of selected instances from each of the 
materials classes. Features of the reflectance spectra that may be useful for distinguishing 
between materials classes by remote sensing are described, as well as the underlying 
chemistry and physics from which they arise. 

Soils 
A typical laboratory reflectance spectrum for soils is shown in Figure 3. Soil spectra have 
very few distinguishing features. There is a gentle rise in reflectance from 0.4µm to about 
1.3µm, and absorption features occur at 1.4µm, 1.9µm, and 2.2µm. The shallow 
absorption feature at 1.4µm and the deeper feature at 1.9µm are due to water absorption 
and are generally less pronounced than those occurring in vegetation reflectance spectra. 
The first of these two features can be utilized in a relative sense to help distinguish soils 
from vegetation, provided that there is a measurable amount of reflectance available at 
this wavelength. The second feature wavelength is unlikely to be measurable due to 
stronger atmospheric attenuation, as indicated in Figure 2. 
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Figure 3. Laboratory reflectance spectrum of a brown, sandy loam soil. 
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The most unique soil feature occurs at 2.2µm. This feature is due to the absorption 
properties of clay minerals within the soil such as Kaolinite, Montmorillonite, and 
Muscovite [4]. This feature is probably the best discriminator for separating soils from 
dry vegetation, rocks and some minerals. However, if the clay minerals exist in low 
concentrations in the soil, or the soil is exceptionally gravelly, the feature may not be 
detectable. 

Vegetation 
The reflectance spectrum of a green lawn grass from the USGS vegetation spectral 
library is shown in Figure 4. A number of features can be seen that are typical of the 
reflectance spectra of photosynthetic (green and wet) vegetation. Reflectance in the 
visible part of the spectrum is low even though solar irradiance is maximal in that 
wavelength region. Reflectance is high in the NIR region with a very rapid transition 
between the red and NIR regions at approximately 0.7µm. This feature is called the red 
edge, and is highly unique compared to what is observed in the reflectance spectra of 
other materials such as soils, rocks and minerals. 
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Figure 4. Laboratory reflectance spectrum of green lawn grass, exhibiting the 
typical character of photosynthetic (green and wet) vegetation. 
 
Reflectance peaks in the NIR band, generally centered at 0.8µm and 1.25µm, are referred 
to as the infrared plateau. High reflectance in this area is caused by strong scattering from 
plant cell walls, and contains diagnostic information based on the cellular arrangement of 
the tissue as well as in the hydration state of the leaf.  
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Chlorophyll absorption features occur around 0.48µm in the blue visible region, and 
0.675µm in the red visible region, and are a function of electronic transitions in the 
cartenoid pigments associated with the photosynthetic process [13]. Additional 
absorption features occur at 0.58µm, in the yellow visible region, and at 0.61µm, in the 
orange visible region, due to protochlorophyll, and chlorophyll-b, respectively. Between 
these two absorption regions a small plateau can be seen in the green visible region from 
0.53µm to 0.56µm. 
 
The library reflectance spectra for a green lawn grass, dry grass, and sandy loam soil are 
shown in Figure 5. The lawn grass and soil spectra are the same as those in Figure 4 and 
Figure 3, respectively. The dry grass spectrum (shown in red) is characteristic of 
nonphotosynthetic vegetation. Note the absence of chlorophyll absorption features in the 
visible region of the spectrum, and the relative weakness of the red edge feature 
compared to the green lawn grass (shown in green). 
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Figure 5. Laboratory reflectance spectrum of a green lawn grass, dry grass, and 
sandy loam soil. 
 
The loss of chlorophyll absorption in the visible region and weakened red edge are 
characteristic of the reflectance spectra of senesced leaves of deciduous species. As a leaf 
begins to senesce, chlorophyll absorption decreases. With further senescence, both 
chlorophyll absorption and the red edge become week. Dead leaves exhibit no 
chlorophyll absorption feature at all. Thus, vegetation can exhibit a continuum of spectral 
shapes in the visible and NIR regions. This makes vegetation a difficult material class to 
1) consolidate into a single monolithic material class, and to 2) separate that class from 
other material classes, given only the chlorophyll absorption and red edge features. 
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Evergreen trees and shrubs retain strong chlorophyll absorption and red edge features 
year round. Thus, this subset of the vegetation class can be easily and consistently 
separated from non-vegetation classes. Some deciduous vegetation can be separated in 
the same manner, but only seasonally. 
 
Since the chlorophyll absorption features in the visible spectrum, and the red edge feature 
are inadequate for distinguishing nonphotosynthetic vegetation from other material 
classes, we must seek features at higher wavelengths. Liquid water in leaves is the most 
important absorber beyond 1µm, but several plant materials have significant absorptions 
between 1µm and 2.4µm. These latter absorptions represent important features for 
discriminating nonphotosynthetic vegetation. 
 
The strongest absorption features in nonphotosynthetic vegetation beyond 1µm, 
excluding water absorption, come from the plant substance cellulose, and to a lesser 
extent, lignin and nitrogen [14]. Examples of reflectance spectra for plant cellulose and 
lignin are shown in Figure 6. Several absorption features are visible in the figure. 
Absorption wavelengths that have been associated with these substances are listed in 
Table 4. 
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Figure 6. Reflectance spectra for spruce cellulose and loblolly pine lignin. 

 

Table 4. Substances that exhibit useful absorption features in dry vegetation. 

Substance Wavelength (microns) 
Cellulose 1.48, 1.93, 2.10, 2.28, 2.34, 2.48 
Lignin 1.45, 1.68, 1.93, 2.04 to 2.14, 2.27, 2.33, 2.38, 2.50 
Nitrogen 0.99, 1.12, 1.46, 1.66, 1.93, 2.13, 2.26, 2.32, 2.50 
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Wavelengths that do not fall within strong atmospheric absorption bands are listed in 
bold font in the table. These wavelengths are suitable candidates for distinguishing plant 
species, and for separating dry, nonphotosynthetic vegetation from other material classes. 
The methodology for exploiting these feature wavelengths is presented in a later section. 

Minerals 
The processes that produce absorption bands in the spectra of materials are rather 
complex. The underlying physics of these processes are described in this section, which 
draws extensively from reference [4]. 
 
Absorption Band Processes 
There are two general processes that cause absorption bands in the spectra of materials -- 
electronic and vibrational. 
 
Electronic Processes 
The most common electronic process revealed in mineral spectra is due to unfilled 
electron shells of transition elements such as nickel, chromium, cobalt, and iron. Iron is 
the most common transition element found in minerals. Isolated ions of transition 
elements have identical d-orbital energies but when the atoms are located in a crystal 
field, the energy levels split. The crystal field varies with crystal structure from mineral to 
mineral and thus the amount of splitting varies. This makes specific mineral identification 
possible from spectroscopy. 
 
Absorptions can also be caused by charge transfers where the absorption of a photon 
causes an electron to move between ions, or between ions and ligands. These absorptions 
are hundreds to thousands of times stronger than crystal field transitions. Charge transfer 
absorptions are the main cause of the red color of iron oxides and hydroxides. 
Reflectance spectra of iron oxides have such strong absorption bands that the shape 
changes significantly with grain size. 
 
In some minerals, there are two energy levels in which electrons may reside – the 
conduction band, where electrons move freely throughout the lattice, and a lower energy 
valence band, where electrons are attached to individual atoms. The difference between 
the two energy levels is called the band gap. The band gap is typically small or non-
existent in metals, and very large in dielectrics. In semiconductors, the band gap 
corresponds to the energy of visible to near-infrared wavelength photons and the their 
spectra approximate a step function. The yellow color of sulfur is caused by such a band 
gap. 
 
A few minerals show color due to absorption by color centers. Color centers are caused 
by illumination of crystal imperfections and impurities. The yellow, purple, and blue 
colors of fluorite are caused by color centers. 
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Vibrational Processes 
The bonds in a molecule or crystal lattice can be likened to a vibrating mechanical system 
of springs with attached weights. The frequency of vibration depends on the strength of 
the bond in a molecule (the springs) and the mass of each element in a molecule (the 
weights). For a molecule with N atoms, there are 3N-6 normal modes of vibrations called 
fundamentals. Each vibration can also occur at roughly multiples of a fundamental 
frequency. Thus, reflectance spectra of minerals can be quite complex. 
 
The additional vibrations are called overtones when they involve multiples of a single 
fundamental mode, and combinations when they involve different modes of vibration. 
Each higher overtone or combination is typically 30 to 100 times weaker than the last. In 
reflectance spectroscopy, these weak absorptions can be measured and diagnostic 
information routinely gained from 2nd and 3rd overtones and combinations. 
 
Sample Mineral Spectra 
Laboratory reflectance spectra for samples of the minerals Alunite, Beryl, and Calcite are 
shown in Figure 7. The three shallow absorption features at 1.88µm, 1.99µm and 
2.16µm, and the deep absorption feature at 2.34µm in the Calcite sample are vibrational 
bands due to CO3. The Alunite sample exhibits shallow absorption features at 1µm and 
1.27µm that represent vibrational bands due to OH and Al-OH, respectively. The pair of 
deep absorption features at 1.44µm and 1.49µm is due to OH. The deep absorption 
feature at 1.77µm, and two additional features at 2.17µm and 2.32µm are due to Al-OH. 
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Figure 7. Laboratory reflectance spectra for some selected minerals. 

The wide dip at 0.82µm in the Beryl reflectance spectrum is due to Fe2+ iron crystal field 
absorption. The deep dips at 1.4µm and 1.9µm arise from vibrational bands due to water 
[4]. 
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A cursory examination of the reflectance spectra in Figure 7 indicates that 1) the 
absorption feature at 1.99µm is diagnostic of Calcite, 2) the absorption features at 
1.49µm and 1.77µm is diagnostic of Alunite, and 3) the absorption feature at 0.82µm is 
diagnostic of Beryl, separating each from the other two minerals. This is a simplistic 
example of reflectance spectroscopy for mineral identification, but it captures the general 
strategy. 
 

Rocks 
Rocks are commonly divided into three major classes according to the processes that 
resulted in their formation. These classes are igneous, sedimentary, and metamorphic.  
 
Igneous rocks are any of a variety of glassy rocks formed by the cooling and 
solidification of molten earth material. A great majority of igneous rocks are composed of 
silicate materials such as pyroxene, amphibole, olivine, and mica. Minor occurrences of 
carbon-rich igneous rocks, e.g. containing sodium carbonate but low in silicates, have 
been found. 
 
The bonding of sediments from broken down minerals creates sedimentary rocks. There 
are two principle types – detrital and authigenic. Detrital rock is formed by the 
accumulation and lithification of sediment composed of grains of minerals such as quartz 
and feldspar that may have been transported to the depositional site. Authigenic rock is 
formed from minerals such as calcite, halite and gypsum within the depositional site in 
response to geochemical processes. 
 
Metamorphic rocks are formed by the alteration of preexisting rocks in response to 
changing environmental conditions such as temperature, pressure, mechanical stress, and 
the addition or removal of chemical components. Metamorphic rocks may be formed 
from igneous, sedimentary, or other preexisting metamorphic rocks. 
 
Laboratory reflectance spectra for examples from each of the three major rock classes are 
shown in Figure 8, Figure 9, and Figure 10. Since rocks are composed of minerals, the 
same strategies employed for mineral identification via reflectance spectroscopy are 
applicable to the identification of rocks. 
 
The metamorphic rock sample -- Chloritic Gneiss – shown in Figure 10, is particularly 
intriguing. Its reflectance spectrum contains features that mimic the chlorophyll 
absorption and the red edge features in the visible and NIR wavelengths observed for 
photosynthetic vegetation. As such, it would take very careful spectral analysis to 
distinguish this particular metamorphic rock type from vegetation. 
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Figure 8. Laboratory reflectance spectra for three igneous rock examples. 
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Figure 9. Laboratory reflectance spectra for three sedimentary rock examples. 
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Figure 10. Laboratory reflectance spectra for four metamorphic rock examples. 

 

Man-made Materials 
The man-made materials class can be a very large one. For this application, we restrict 
out attention to man-made materials that would be commonplace in the remote sensing of 
a rural environment. Examples would include paving materials such as concrete and 
asphalt, and construction materials such as concrete, tar, pinewood, brick, cinders, and 
metals such as copper and galvanized steel. 
 
Example laboratory reflectance spectra for road paving materials are shown in Figure 11. 
The reflectance spectra for these materials exhibit a generally slower rise in reflectivity 
from shorter to longer wavelengths, compared to the spectra for vegetation, soils, and 
some commonplace rocks. The maximum reflectivity is generally lower as well. The 
difference in reflectivity between wavelengths in the blue and red visible regions has 
been utilized to discriminate between paved road surfaces and shoulder materials for 
autonomous vehicle navigation [15]. Paved roads tend to be more bluish whereas 
materials encountered in road shoulders tend to be more reddish. 
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Figure 11. Laboratory reflectance spectra for road paving materials. 

 
Example laboratory reflectance spectra for building materials are shown in Figure 12. 
Most of the construction materials in the figure are relatively featureless except for the 
general slow rise in reflectance starting at the shortest wavelengths. The construction pine 
wood is a notable exception, which exhibits the characteristics of senesced vegetation. 
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Figure 12. Reflectance spectra examples of building materials. 
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Water 
A single example of the reflectance spectrum for seawater at Sea State 0 is shown in 
Figure 13. Although the absolute reflectivity can vary greatly depending on the viewing 
angle, the consistently negative slope in reflectivity from shorter to longer wavelengths 
appears to distinguish liquid water from many other materials. 
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Figure 13. Reflectance spectrum for seawater at Sea State 0. 

 
When water becomes frozen, it acquires the crystalline characteristics of a mineral. 
Consequently, the spectral analysis methods utilized for discriminating minerals also 
apply to the analysis of water ice. 
 
Example reflectance spectra for frost and different granularities of snow are shown in 
Figure 14. The negative slope from shorter to longer wavelengths is still observable, 
particularly in the range of 0.6µm to 0.8µm. Narrow absorption features occur at 1.05µm 
and 1.21µm, and broad features occur at 1.30µm, 1.50µm, and 2.0µm. 
 
Snow and frost can confuse the spectral analysis picture if the materials of interest are 
covered with it. Dealing with this issue is beyond the scope of this report. 
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Figure 14. Reflectance spectra for water ice in the form of frost and snow. 

 
 
Algorithm Strategies for Materials Identification 
The primary emphasis of materials identification for autonomous navigation is on the 
discrimination of vegetation from other materials classes, and on the discrimination 
between vegetation species. The reason for this emphasis on vegetation is that the other 
materials classes consist of mostly very hard substances such as rocks and minerals, 
whose navigability is determined mostly by shape and position, independent of their 
chemical makeup. Conversely, the detailed shape of plants is determined by species.  
 
Advantages of identifying plant species may include: 

• Avoiding plant species that tend to snag small robotic vehicles 
• Locating hidden water hazards by identifying plants that thrive at water’s edge 
• Seeking pathways below tree species that suppress undergrowth 

 
Visible water hazards also deserve some attention since the detection of a body of water, 
or discriminating between dry soil and wet soil may have serious benefits with respect to 
navigability. 
 
The ability of reflectance spectroscopy to discriminate between different materials is 
fundamentally limited by the number and fineness of the distinct wavelength bands one is 
able to measure. Consequently, it is appropriate to introduce the capabilities and 
complexities of multispectral and hyperspectral sensing, before delving into algorithm 
strategies. 
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Multispectral v. Hyperspectral Sensing 
Multispectral sensors are commonly defined as those that measure in the neighborhood of 
5 to 20 distinct wavelength bands. Hyperspectral sensors are commonly defined as those 
that are capable of measuring at least 100 distinct wavelength bands. Implicit with higher 
numbers of distinct wavelength bands is the need for sharper optical bandpass filters to 
separate the various bands. The spacing between adjacent measurement wavelengths can 
be 0.01µm, or perhaps finer, for hyperspectral sensors. Multispectral sensors typically 
have broader wavelength bands. A multispectral sensor example is provided in Table 5, 
which lists the sensing bands for the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 
[16]. 

Table 5.  Landsat 7 ETM+ sensing bands. 

Band Number Wavelength Range Description 
1 0.45 – 0.515 µm Blue 
2 0.525 – 0.605 µm Green 
3 0.63 – 0.69 µm Red 
4 0.75 – 0.90 µm Near Infrared 
5 1.55 – 1.75 µm Near Short Wave Infrared 
6 10.4 – 12.5 µm Thermal 
7 2.09 – 2.35 µm Middle Short Wave 

Pan 0.53 – 0.90 µm Color-InfraRed (CIR) 
 
A digital RGB color camera could arguably be considered a minimalist multispectral 
sensor. However, for distinguishing vegetation from other material classes, substantial 
improvement would be gained by adding a single band centered at the vegetation plateau 
wavelength of 0.83µm, similar to Landsat 7 ETM+ band 4. Such technology exists today 
in a class of devices called Color-Infrared (CIR) sensors. 
 
CIR sensors typically include at least two of the visible Red, Green and Blue 
wavelengths, plus at least one wavelength in the infrared. They exist as both still image 
cameras and video cameras. A still camera based on a Nikon N90 camera and modified 
by Kodak to obtain digital CIR capability was developed for the USDA Forest Service 
Remote Sensing Applications Center (RSAC). This digital still camera, shown in Figure 
15, mimics the response characteristics of Panchromatic Color-Infrared (CIR) film 
utilized in remote sensing applications. 
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Figure 15. A still camera based on a Nikon N90, modified by Kodak for the USDA 
Forest Service, has digital Color InfraRed (CIR) capability. 
 
A still picture of trees, grass, and sky, taken with the Kodak-modified CIR camera, is 
shown in Figure 16. The photo has been normalized to account for a fixed difference in 
sensitivity between the NIR and visible bands in the CIR camera. Reddish tints in the 
CIR image are indicative of photosynthetic vegetation. 
 

 
Figure 16. Still picture of trees, grass, and sky taken with Kodak-modified CIR 
digital camera. 
 
CIR video camera technology is also available. A video camera from the manufacturer 
DuncanTech that uses three CCD chips to obtain CIR capability is shown in Figure 17. 
The DuncanTech model is available in two standard configurations -- Green+Red+IR at 
full resolution, or Blue+Green+Red+IR at half resolution. Standard wavelength bands are 
listed in Table 6. DuncanTech camera technology is now sold through Kodak. 
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Table 6. Standard wavelength bands for the DuncanTech MS2100 CIR camera. 

Color Center Wavelength FWHM 
Blue 460 nm 45 nm 

Green 540 nm 40 nm 
Red 660 nm 40 nm 

Infrared 800 nm 65 nm 
 

 
Figure 17. DuncanTech model MS2100 CIR camera. 

 
These CIR sensors are a bit cumbersome compared to what exists today in RGB still and 
video camera technology. However, the desired infrared band is within the spectral 
response of silicon CCDs, so there is no technical reason why a CIR camera can’t be 
designed and built with the same sensor resolution and small packaging size of a modern 
color camera. 
 
Another alternative is to utilize an RGB camera in conjunction with a laser radar 
operating at a wavelength of 0.83µm. The reflectivity image of the laser radar would 
provide data in the NIR to compare with the output of the RGB camera. Some calibration 
and image registration issues would need to be addressed, but it seems possible. 
 
Jody Smith has suggested the following idea [2]. Two CIR cameras can be operated as a 
stereo pair. In order to register the frames from the two cameras, they need only have one 
wavelength in common. Thus, one camera can be R+G+B and the second camera can be 
R+G+IR, or even G+IR1+IR2. 
 
A step up in complexity from CIR sensors is multispectral sensors that have up to 
perhaps 20 bands. These bands may span wavelengths ranging from 0.4µm to 2.5µm, 
which includes the VIS, NIR, and SWIR bands. 
 
Typical silicon CCD arrays exhibit maximum responsivity at about 0.68µm with usable 
responsivity from 0.48µm to 0.96µm. Thus, to extend operation into the SWIR regime, 
sensing materials other than silicon are required. Indium-Lead (InSb) sensors can operate 
from approximately 1µm to 2.5µm. Indium-Gallium-Arsenide (InGaAs) sensors can 
operate from approximately 0.85µm to 1.7µm. Clearly, multiple sensing devices are 
required to span the VIS through SWIR wavelengths, and the multispectral sensor 
operating bands must be divided among these sensing devices. 
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The simplest mechanism for interposing the bandpass filters required to cover each band 
assigned to a particular device, is to place a spinning filter wheel in front of a staring 2-D 
sensor. The spinning filter wheel must be synchronized with image capture so that all 
pixels see the same filter during each image frame acquisition, and the sensor knows 
which filter is associated with each image frame. 
 
Hyperspectral sensors are another step up in complexity from multispectral sensors in 
that they generate high-resolution data in three dimensions. Since most sensing elements 
are at most two-dimensional, some sort of mechanical scanning is required to obtain a 
third dimension. In a typical design, special optics are utilized to disperse received light 
at different wavelengths across one dimension of the sensor. The second dimension of the 
sensor yields one of the two required spatial dimensions, and the last spatial dimension is 
obtained by mechanically sweeping the sensor. 
 
There are three possible types of optics used as filters to disperse light at different 
wavelengths across the sensing elements – prisms, transmissive holographic diffraction 
gratings, and reflective holographic diffraction gratings. Prisms are the simplest in design 
and exhibit the least amount of light attenuation. However, they produce nonlinear 
dispersion and have no aberration correction. Holographic diffraction gratings have linear 
dispersion and can be designed for aberration correction. However, they are more lossy 
than prisms. Transmissive diffraction gratings exhibit the highest losses allowing only 
about 5% of incident light to pass. Reflective diffraction gratings reflect 40 to 60% of 
incident light. Thus, reflective holographic diffraction gratings are the most popular 
optical design for modern hyperspectral sensors. 
 
An important conclusion to draw from this discussion is that system complexity increases 
as the number of required wavelength bands increases, and the required wavelengths 
extend beyond the NIR band into longer wavelength bands. The relevant attributes are 
summarized in Table 7. The wavelength ranges stated in the table are approximate and 
are limited in scope to those of bands interest for the intended application. The sensor 
mechanics and detector materials are simply representative solutions – alternatives may 
exist. 
 

Table 7. System complexity as a function of the desired number of wavelength 
bands and the range over which the desired wavelengths span. 

Typical # 
of Bands 

Wavelength 
Range 

Sensor 
Type 

Sensor 
Mechanics 

Detector 
Material 

System 
Complexity 

3-4 0.4 – 1.0 µm CIR Staring 2D Si Low 
5-7 0.4 – 1.0 µm Multispectral Filter wheel Si Medium 
8-20 0.4 – 2.5 µm Multispectral Filter wheels Si, InSb Medium-high

>=100 0.4 – 2.5 µm Hyperspectral Scanning 3D Si, InSb High 
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Multispectral Algorithm Approaches 
Spectral Features in the VIS/NIR 
Much attention in the remote sensing of green vegetation is focused on the strong contrast 
in reflectance between the visible and NIR. A rapid transition, seen in Figure 4, occurs at 
a wavelength of approximately 0.7µm for healthy vegetation, and is often referred to as 
the red edge. The presence of the red edge is usually detected by comparing the 
reflectance at a wavelength below the red edge in the visible red region at about 0.68µm, 
with the reflectance at a wavelength above the red edge in the NIR region at about 
0.83µm. Recall from earlier discussion that soil, which lacks the chlorophyll absorption 
feature at 0.68µm, and the strong reflectivity plateau at 0.83µm, exhibits weak red edge 
contrast that seldom exceeds that of even nonphotosynthetic vegetation. 
 
If a particular remotely sensed scene contains a mixture of vegetation and exposed soil, 
the image pixels will exhibit varying degrees of red edge contrast depending on the 
relative proportions of vegetation to soil in each pixel. As a consequence, if a two-
dimensional plot showing the distribution of reflectance values at the red vs. infrared 
wavelengths is formed, the result is a point cloud with a distinct appearance referred to as 
a tassled cap (Kauth and Thomas, 1976). Since the contrast between the two wavelengths 
for soil is usually less than or equal to the contrast for vegetation, soil establishes a 
baseline forming the flat bottom of the tassled cap, referred to as the “soil line”. 
Conversely, vegetation tends to produce values in the point cloud that are approximately 
perpendicular to and above the soil line. Points that are most distant from the soil line 
represent pixels that contain 100% vegetation. This discovery led to a number of 
algorithm strategies for detecting the soil line, and establishing various indices for 
detecting vegetation above the soil line. 
 
The ratio vegetation index was developed as an approximate measure of the proportion of 
vegetation in each pixel (Jordan, 1969), which has the form 

RED

NIRRVI
ρ
ρ

=   , (Eq. 1) 

where ρ is reflectance. 
 
Unfortunately, RVI has an infinite range of values. The normalized difference vegetation 
index (NDVI) is functionally related to RVI, but has the advantage of being bounded to 
the range of  -1.0 to 1.0. It has another advantage in that it tends to reduce the effects of 
broadband albedo through normalization. 
 

1
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ρρ

 (Eq. 2) 

 
The NDVI was computed for every laboratory reflectance spectrum in the merged 
database. The NDVI wavelengths were 0.68µm and 0.83µm. The results were grouped 
into histograms for each broad material class, which are shown in Figure 18. The five-
character class tags for each material category are shown above the histograms. 
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Figure 18. Histograms of NDVI values computed from reflectance spectra in the 
merged database. 
Note that the NDVI is positive for each vegetation instance in the database. It also has a 
bimodal appearance with a split at a NDVI value of about 0.5. This bimodal character 
may be due to clustering of photosynthetic and nonphotosynthetic vegetation. The largest 
NDVI value for non-vegetation (~0.42) occurred in the mineral class. Thus, a NDVI 
value greater than 0.42 separates a substantial amount of photosynthetic vegetation from 
all other classes. 
 
Soils exhibited positive-only NDVI values in the range of 0.09 to 0.27. Water exhibited 
NDVI values that were all negative. Thus, NDVI appears to easily separate vegetation 
from water in laboratory spectra. The other material classes – minerals, rocks, and man-
made materials – exhibited NDVI values that were both positive and negative. Thus, 
NDVI has some ability to reject a portion of these material classes, but additional 
discriminants are needed to fully separate these classes from the vegetation class. 
 
The normalized difference operator has inspired researchers to seek other pairwise 
combinations of wavelengths that might exhibit some discrimination power with respect 
to vegetation health. A small sampling of these operators is listed in Table 8. 
 

Table 8. A small sampling of other normalized difference and related operators. 

Operator Description Wavelengths (µm) 
PNI Percent Nitrogen 0.764, 1.640 
PRI Photochemical Reflectance 0.531, 0.570 
PNSI Plant Nitrogen Spectral Index PNSI = abs(1/NDVI) 
RVSI Red Edge Vegetation Spectral Concavity (ρ0.714 + ρ0.752)/2 - ρ0.733 
NDGR Normalized Difference Green-Red 0.670, 0.550 
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Many of the operators listed in Table 8 are designed to measure some aspect of plant 
health. The normalized difference green-red (NDGR) operator tends to measure the 
“greenness” of materials, and is of more general use. 
 
Histograms of the NDGR operator computed for each material class in the merged 
database are shown in Figure 19. Note that approximately half of the flora class has 
NDGR values less than zero and the other half has values greater than zero. Vegetation 
that has color more green than red, has positive NDGR values. Soil colors are more red 
than green. All the soil instances in the merged database have NDGR values that are less 
than zero. Relatively high percentages of minerals, rocks, and man-made materials also 
have NDGR values that are less than zero. 
 
Things get more interesting when one combines the NDGR results with the NDVI results. 
Vegetation that is photosynthetic and not senesced, have strong positive NDVI values. 
Among the vegetation that falls within this category, the NDGR index tends to 
discriminate between branches and leaves. Thus, negative NDGR values tend to identify 
tree bark and branches, and positive NDGR values tend to identify leaves. 
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Figure 19. Histograms of NDGR values for broad material classes. 

 
A comparison of wavelengths in the visible red region with wavelengths in the visible 
blue region has been utilized in autonomous navigation for road following to discriminate 
between road paving materials and materials encountered on the road shoulder [15]. A 
normalized difference discriminant can be formed based on these two wavelength 
regions. Here we define a normalized difference blue-red (NDBR) operator as 
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redblue

redblueNDBR
ρρ
ρρ

+
−

=  . (Eq. 3) 

 
Using a center wavelength of 0.48µm in the visible blue region, and a center wavelength 
of 0.67µm in the visible red region, histograms of the NDBR were computed for the 
material classes. The results are shown in Figure 20. 
 
Note that all soils in the database have NDBR values that are less than -0.25. Of the man-
made materials in the database, all road paving materials have NDBR values greater than 
–0.25. This reinforces the claims that blue-red differences can discriminate between 
paved road materials and roadside dirt. 
 
Some man-made materials that had NDBR values less than –0.25 were pinewood, red 
brick, and roofing shingles. 
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Figure 20. Histograms of the NDBR discriminant for the broad material classes. 

 
The NDVI, NDGR, and NDBR discriminants can be computed using either broad or 
narrow wavelength regions. They need only have the proper center wavelengths with 
minimal overlap. This means that they can be obtained from CIR, multispectral, or 
hyperspectral systems. 
 
A stereoscopic CIR approach that utilizes the NDVI, NDGR and NDBR discriminants is 
appealing due to low system complexity. If the CIR camera pair has at least one 



 

  33 
 

 

wavelength in common, the images can be co-registered, and range information can be 
derived from binocular disparity. Range information is essential for deducing object 
scale. If combined with broad spectral information, objects can be segmented within a 
scene. 
 
If one adds texture analysis to augment materials identification, it may be possible with a 
completely passive system to meet the autonomous navigation object avoidance goals in 
daylight. 
 
An interesting alternative would be to combine a single RGB camera with laser radar 
operating at a wavelength of 0.83µm. The possibility of combining NIR reflectance data 
from the laser with the RGB wavelength data from the camera to obtain the equivalent of 
CIR capability deserves further investigation. 
 
 
Spectral Features beyond VIS/NIR 
Spectral features beyond the visible and NIR bands include the vegetation absorption 
features due to cellulose, lignin, and nitrogen, the soil absorption feature due to clay 
minerals, and the absorption features of rocks and minerals due to their crystalline 
structure and molecular constituents. In this section we will explore how to utilize limited 
numbers of these features to discriminate between broad material classes. However, the 
narrowness of some features requires that the filters for the wavelength features be highly 
selective. Thus, the total number of features implies multispectral sensing, but the 
sharpness of the filters implies hyperspectral wavelength resolution. Perhaps, we can call 
our hybrid approach finespectral sensing. 
 
Toward that end, the merged database of laboratory reflectance spectra was re-sampled to 
a uniform wavelength spacing of 0.01µm. Our analysis is confined to the wavelength 
range of 0.4µm to 2.4µm. 
 
Faced with a bewildering array of absorption features exhibited in the various material 
classes, we sought to employ a feature discovery mechanism for determining the best 
features for separating the material classes. The approach consists of the following steps: 
1) forming a normalized difference index (NDI) for every possible pairwise combination 
of wavelengths at 0.01µm intervals, 2) computing receiver operating characteristic 
(ROC) curves from the normalized difference indices, for separating one material class 
from every other material class, and 3) forming a performance metric by computing the 
maximum area under each ROC curve. 
 
The ROC curves were formed by computing the probability of detection and the false 
alarm rate for each normalized difference metric, at 100 equally-spaced detection 
threshold values, spanning the full range [-1 1] of possible normalized difference values. 
The area under the ROC curves was computed for each pairwise combination of 
wavelengths. Those combinations of wavelengths that yielded the greatest area under the 
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ROC curve were deemed to have the greatest discrimination power for separating the 
material classes. 
 
The result for separating the vegetation class from all other material classes is shown in 
Figure 21. Each colored pixel in the figure represents the area under the ROC curve for a 
normalized difference index computed from two specific wavelengths. The black 
diagonal line that runs through the figure indicates the ROC areas obtained from 
normalized difference indices computed for the cases where the two feature wavelengths 
were equal. Clearly, when the wavelengths are equal, the discrimination power is zero. 
 
The dark red regions in the figure indicate pairwise combinations of feature wavelengths 
that exhibit strong discrimination power. Note that the NDVI discriminant has been re-
discovered by the process, as indicated by the dark red region centered at about 0.6µm in 
the first feature wavelength, and spans approximately 0.7µm to 1.1µm for the second 
feature wavelength. A contour plot of the same data would reveal more precise information. 
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Figure 21. Color-coded plot of ROC curve areas for every pairwise combination of 
feature wavelengths from which normalize difference indices were computed. Dark 
red regions represent wavelength combinations with the greatest discrimination power. 

 
The result in Figure 21 does not take into account the effects of atmospheric absorption. 
Recall from earlier discussion that reflectance in certain wavelength bands is highly 
variable, and in some cases, practically immeasurable, due to atmospheric absorption. 
The same plot is repeated in Figure 22, with these problematic wavelength bands blocked 
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out. The dark red regions in this figure represent candidate feature wavelength pairs for 
discriminating vegetation from the other material classes. 
 
Thirteen pairs of wavelength features were extracted at local maxima found in the red 
regions in the figure. These wavelength pairs are listed in Table 9. An attempt was made 
to associate the extracted wavelengths with known feature wavelengths in the published 
literature. Most feature wavelengths listed in the table have associations with known 
absorption feature wavelengths and/or known high reflectance regions for vegetation, 
i.e. the vegetation plateaus. 
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Figure 22. ROC curve areas with atmospheric absorption wavelength regions 
blocked out. 
 
The thirteen feature wavelength pairs were tested using a uniformly weighted linear 
classifier, in which every possible subset of these features was considered. The purpose 
was to retain only the most discriminating features, and to reject those features that did 
not significantly contribute to overall performance. The same area under ROC curve 
metric was used for the evaluation. 
 
The surviving feature pairs were #1, #2, #4, #5, #7 and #12. A final experiment was then 
conducted in which randomly valued weights were applied to each feature pair in a large 
Monte Carlo run. The weights were chosen randomly, but were scaled to sum to unity. 
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The weights that maximized the ROC curve area, drawn from one million random 
combinations, are listed in Table 10.  
 

Table 9. List of wavelength feature pairs extracted from local maxima in the red 
regions of the ROC area plots. 

Pair 
Number 

Feature 
λ #1 

Wavelength #1 
Associations 

Feature 
λ #2 

Wavelength #2 
Associations 

1 0.64 Chlorophyll 0.89 Vegetation plateau 
2 2.12 Lignin 2.19 Vegetation plateau 
3 2.10 Arabinogalactan, 

Cellulose, Lignin, 
Starch 

1.65 Vegetation plateau 

4 2.27 Lignin, Cellulose 2.24 Pectin (apple) 
5 1.72 Pectin (apple), Xylan 1.68 D-ribulose, Lignin, Pectin 

(citrus) 
6 2.27 Lignin, Cellulose 1.65 Vegetation plateau 
7 1.57 unknown 1.62 Vegetation plateau 
8 0.51 Humic acid 0.54 Humic acid 
9 0.40 Chlorophyll-a, Humic 

Acid, Lutein 
1.65 Vegetation plateau 

10 0.40 (same as above) 0.44 a-carotene, Chlorophyll-a, 
Chlorophyll-b, Humic 

Acid, Lutein, 
Protochlorophyll 

11 0.40 (same as above) 2.21 Vegetation plateau 
12 1.21 Arabinogalactan, 

Carnauba wax, Xylan 
1.25 Vegetation plateau 

13 1.00 unknown 1.05 Vegetation plateau 
 

Table 10. Surviving feature pairs and relative weighting in a linear classifier. 

Pair # Wavelength #1 Wavelength #2 Weight Value 
1 0.64 0.89 0.0695 
2 2.12 2.19 0.2445 
4 2.27 2.24 0.0868 
5 1.72 1.68 0.2900 
7 1.57 1.62 0.2545 
12 1.21 1.25 0.0547 

 
The ROC curve shown in Figure 23 indicates the ability of the weighted combination of 
six normalized difference index features to separate the vegetation class from all other 
material classes in the database. With the threshold set for a probability of detection of 
100% for vegetation, the system rejects 47 out of 50 instances of the other material 
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classes. It should be noted that this is the performance that would be obtained for a one-
pixel observation of the data. Better performance would be expected for multiple pixels. 
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Figure 23. Single pixel observation ROC performance curve for discriminating 
vegetation from all other material classes. 

Atmospheric Corrections 
The normalized difference indices (NDI) utilized in the previous section provide some 
measure of compensation for variation in the reflectance spectra of materials due to 
atmospheric effects. This is because they are based on reflectance ratios rather than 
absolute measurements. However, additional compensation for atmospheric effects may 
be required. 
 
A calibration of atmospheric conditions can be performed under laboratory conditions 
with an accuracy of perhaps 2.5%. A 5% error is the best that can be achieved in the field 
using high quality equipment, careful technique, and the best atmospheric modeling 
codes available. A calibration accuracy of 10% could be expected for a real-world 
deployable system [2]. 
 
In order to achieve 10% accuracy, the following two items are needed 1) characterization 
of atmospheric aerosols, and 2) characterization of columnar water vapor. Additional 
items could be measured, but these two items yield the biggest payoff. 
 
Atmospheric aerosols can be characterized by local measurement of direct and diffuse 
light. Conceptually, a device would be mounted on top of the robotic vehicle that would 
measure the spectrum of direct sunlight, as well as diffuse light over a full hemisphere. 
Both measurements would be taken over a selected set of wavelengths. 
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The Yankee Environmental Systems Multi-Filter Rotating Shadow-Band Radiometer 
(MFRSR) is a commercial device designed to measure direct and diffuse radiation at six 
wavelengths: 0.415, 0.500, 0.610, 0.665, 0.862, and 0.940 µm. The nominal full width 
half max (FWHM) bandwidth is 0.01µm [17,18]. 
 
Columnar water vapor can be measured using two wavelengths – either 0.94µm and 
0.87µm, or 0.94µm and 1.03µm. The 0.94µm wavelength is in the middle of an H2O 
absorption feature, and 0.87µm and 1.03µm are on the edges on either side of the 
absorption feature. The columnar water vapor is characterized by computing a linear 
regression of the data at the middle and at either edge of the H2O absorption feature. 
 
A miniature instrument designed to characterize both aerosols and columnar water vapor 
could be designed for a small robotic vehicle. The maximum calibration error would be at 
the longer wavelengths. An instrument with a calibration error of 10% at 2.4µm would 
have as little as 2% calibration error at 0.5µm. 
 
In the autonomous navigation application, the close proximity of the vehicle to the 
potential obstacles whose reflectance is being measured would ensure that the 
atmospheric compensation measured at the vehicle would be valid at the obstacle 
location. 

Hyperspectral Algorithm Approaches 
Continuum Removal 
The remote sensing of surface materials from satellites in space is a more difficult 
challenge than sensing the same materials near the earth’s surface, due to the additional 
return path through the atmosphere required to reach the sensor. As such, drastic 
measures are taken in satellite sensing to discount the effects of atmospheric variations in 
radiance measurements. 
 
A process called continuum removal is often used, which involves constructing a 
piecewise linear convex hull, or polynomial continuum across the peaks of a reflectance 
spectrum, and dividing the reflectance value at each wavelength by its continuum value 
[19]. This compensates for curvatures and tilts in localized regions of the radiance 
spectrum due to atmospheric variations. 
 
A more localized continuum removal is performed when one is interested in spectral 
detail in selected wavelength ranges. The sequence of steps for constructing a localized 
continuum is pictured in Figure 24 through Figure 27, for the reflectance spectrum of dry 
tumbleweed. 
 
A continuum region is defined by the wavelength endpoints of a continuum line, and a 
predetermined central wavelength somewhere between the two endpoints. In the first 
algorithm step, the reflectance values at the endpoint wavelengths are obtained. In the 
second step, the reflectance values at each measured wavelength at and between the 
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endpoints are divided by the reflectance values along the continuum line. This step 
removes the tilt from the continuum region, as shown in Figure 25. 
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Figure 24. Continuum lines shown on the reflectance spectrum of a tumbleweed. 
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Figure 25. Local continuum have been extracted and the spectral values have been 
divided by values along the continuum line. The continuum lines have been 
vertically biased to a reflectance value of one. 
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Figure 26. The reflectance values have been inverted, and the reflectance at the 
continuum center wavelengths have been measured. 
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Figure 27. Reflectance values in the continuum regions have been normalized by the 
reflectance measured at the continuum center wavelengths. Measurements of 
normalized reflectance are then taken at predetermined wavelengths within each 
continuum region. These measurements are more stable under atmospheric 
variation. 
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In the third step, the reflectance values are inverted and the continuum lines are at zero 
reflectance, along the horizontal axis. The reflectance value at the central wavelength 
defined for each continuum, is also obtained. In the final step, the reflectance values are 
normalized by the central reflectance values obtained in the previous step. The new 
reflectance values now peak at 1.0. 
 
With the reflectance samples in the continuum now compensated for atmospheric 
variation, and normalized in amplitude, measurements at critical wavelengths within the 
continuum can now be taken, and used in an absolute magnitude sense. The critical 
wavelengths within the local continuum are usually absorption wavelengths that tend to 
discriminate between different materials of interest. 
 
One can go through the exercise of constructing local continuum regions optimized for 
the discrimination of vegetation. However, for the autonomous vehicle obstacle 
avoidance problem, given that the measurements are taken close to the earth’s surface, 
and given the possibility of characterizing the atmosphere to 10% accuracy in close 
proximity to the materials being measured, it may not be necessary to perform continuum 
removal. 
 
 
Materials Identification Using Hyperspectral Data 
A basic starting point for pursuing materials identification with hyperspectral data is to 
utilize the measured reflectance obtained at each wavelength as a set of raw features. We 
seek to identify selected vegetation species while rejecting all other plants and materials. 
The hope is that the pattern of reflectance as a function of wavelength is distinct between 
different plant species compared to within-class variation. 
 
A first check is to determine the separability of the exemplars available in the database 
for each plant species of interest. There are a number of distance measures used to 
determine separability [1]. One of the simplest distance measures is an angular metric 
defined as 
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Where µa is the feature vector for some material a, and µb is the feature vector for a 
second material b. Small angle values for the metric indicate low separability, and larger 
angles indicate higher separability. 
 
Experiments have been performed with two plant species – tumbleweed and aspen leaf – 
representing dry nonphotosynthetic and green photosynthetic instances. Each of the two 
species was considered the target class in separate experiments. In both cases, the non-
target class included all other plant species in the database, and where appropriate, all 
other material classes. 
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A laboratory reflectance spectrum for the tumbleweed is shown in Figure 28. The 
reflectance values at wavelengths with high atmospheric absorption are not displayed. 
These wavelengths have been eliminated from consideration as features. 
 
The angular separability metric was computed for the tumbleweed instance measured 
against all other vegetation instances in the database. The result is shown in Figure 29. 
The database index number for each vegetation instance is represented on the horizontal 
axis. The tumbleweed is at index number 16, which shows the expected angular 
separation of zero. Most vegetation species were separated from the tumbleweed by at 
least 5 degrees. There were 8 out of 96 vegetation instances in the database that yielded 
angular separation of less than 5 degrees. The closest was brown wood from Big 
Sagebrush, with an angular separation of 2.2 degrees. Other instances included brown 
wood, bark, and leaves from Mormon Tea, White Peppermint, and Sycamore. 
 
Next, the angular separability was computed for the tumbleweed measured against other 
material classes in the database including vegetation, soils, rocks, minerals, and man-
made materials. The result is shown in Figure 30. The first 96 database entries are 
vegetation. Beyond these entries, separability from the other materials was, on average, 
noticeably greater. The closest non-vegetation match was a mineral called Saucenite at 
index #498, with a separability angle of 6.5 degrees. 
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Figure 28. Laboratory reflectance spectrum of tumbleweed. Reflectance values at 
strong atmospheric absorption wavelengths are eliminated. 
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Figure 29. Angular separation in degrees between the tumbleweed instance and all 
other vegetation instances in the database. Database entry #16 is the tumbleweed 
itself, so the angular separation value is zero. 
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Figure 30. Angular separation in degrees between the tumbleweed instance and all 
other materials in the database. 
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Next, the experiments were repeated for the aspen leaf. The reflectance spectrum for an 
instance of the Aspen leaf is shown in Figure 31. The angular separability metric was 
computed for the Aspen leaf instance measured against all other vegetation instances in 
the database. The result is shown in Figure 32. There are actually two instances of the 
Aspen leaf in the database at indices #1 and #2. The within-class separation between 
these two instances is 0.79 degrees. There are 12 out of 94 instances of other vegetation 
that exhibit separability angles of less than 5 degrees. The closest is a Maple leaf at 2.4 
degrees, followed by Red Willow and Bay Laurel. 
 
The separability for materials in other classes is very strong. The median separability 
angle is 34.3 degrees. The mineral Sphalerite is the closest non-vegetation match at 17.5 
degrees. 
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Figure 31. Laboratory reflectance spectrum of an Aspen leaf. Reflectance values in 
atmospheric absorption bands are not shown. 
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Figure 32. Angular separation in degrees for an Aspen leaf measured against other 
vegetation. Two instances of the Aspen leaf are at database indices #1 and #2. 
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Figure 33. Angular separation in degrees between the Aspen leaf instance and all 
other materials in the database. The median separation for non-vegetation 
materials, which begin at index #96, is 34.3 degrees. 
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Since the database only contains one or two instances of individual plant species, it is 
difficult to assess within-class variation. One attempt at gaining some insight into this 
matter was made in the form of an experiment. One of the Aspen leaf reflectance spectra 
was mixed with the reflectance spectrum of a brown loam soil, in controlled proportions. 
The resulting angular separation between the original Aspen leaf spectrum and the mixed 
spectrum is plotted in Figure 34 as a function of the percentage contribution of the soil 
spectrum. The relationship between the percent soil mixture and the angular separability 
appears to be linear. A mixture of 5% soil and 95% Aspen leaf is enough to add 5 degrees 
of angular difference compared to the pure Aspen leaf exemplar. This amount of within-
class separation could be enough to confuse the Aspen leaf with its closest match the 
Maple leaf. 
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Figure 34. Within-class angular separation for Aspen leaf spectrum mixed with a 
soil spectrum. 

 
The experiments conducted on materials identification with hyperspectral data are not 
conclusive due to the lack of sufficient within-class data. However, they do suggest that 
the discrimination of vegetation species is feasible with hyperspectral data. Data 
collections should be conducted to acquire several instances of each vegetation species of 
interest. Also, the calibration errors of the proposed atmospheric measurement and 
characterization device should be included in the analysis. 
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System Design Issues 
In this section we discuss some system design issues such as spectral sensor 
configurations, companion sensors, sensor resolution requirements, and methodologies 
for nighttime operation. 

Spectral and Companion Sensor Configurations 
Four spectral sensor system designs are listed in order of increasing complexity and 
capability. Salient features of the designs are included such as complementary sensors, 
complementary image processing techniques, and distance/scale measurement issues. 
 

• #1: One CIR camera 
o Broad feature multispectral analysis in conjunction with spatial texture 

analysis for materials identification 
o Spatial texture analysis handles the brunt of materials identification 
o Multispectral analysis in 3-4 bands facilitates object segmentation and 

broad categorization of materials 
o No moving parts 
o Daytime operation only 

• #2: Two CIR cameras, with one or more spectral bands in common. 
o Crucial distance and scale information derived from stereoscopic pair 
o Requires at least one band in common for stereo fusion 
o Other bands need not be in common to gain wavelength diversity 
o Spatial texture analysis required for materials identification. 
o Multispectral analysis in 4-7 bands facilitates object segmentation and 

broad categorization of materials 
o No moving parts 
o Daytime operation only 

• #3: One RGB camera and a laser radar operating at ~0.83µm 
o Distance and scale information derived from laser range image 
o RGB image combined with laser reflectance image to obtain CIR 

capability 
o There may be calibration problems in fusing RGB camera image with 

laser reflectance image. Needs to be researched. 
o Spatial texture analysis required for materials identification 
o RGB camera and IR laser are complementary sensors 
o Laser radar may require mechanical scanning 
o Day/night ranging and imaging, daytime materials classification 

 
• #4: Hyperspectral sensor, atmospheric calibration device, laser radar 

o Atmospheric calibration device can be built to achieve 10% accuracy 
o Hyperspectral sensor for materials identification 
o Laser radar for distance and scale information 
o Spatial texture analysis still useful 
o Day/night ranging and imaging, daytime materials classification 
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Sensor Resolution and Field of View 
A good reference point for determining the required sensor resolution is to consider 
materials identification through reflectance spectroscopy of a tree trunk. In order to 
identify a tree of some minimum trunk diameter, there should be at least three pixels 
across the trunk at some specified maximum range. For example, if we wish to identify a 
tree with a trunk diameter of 6” at a range of 50 ft., the trunk would occupy 0.573 degrees 
within the field of view. In order to achieve a total field of view of 60 degrees, the 
imaging sensor would need 104 pixels in the horizontal dimension. If the same tree trunk 
were at a range of 100 ft., the trunk would occupy 0.287 degrees within the field of view. 
In this case, the sensor would need 210 pixels in the horizontal dimension to span a 
60-degree field of view. 

Nighttime Operation 
Nighttime operation poses an interesting challenge for materials identification. 
Reflectance spectroscopy for remote sensing usually relies on the presence of solar 
irradiance, which means that it is daytime-only. Thermal imaging in the TIR band relies 
on self-emission of materials, and is usually done at night to minimize contributions from 
reflectance. However, the emissivity function that determines the spectral character of the 
thermal emission can vary drastically over the surface of a plant. Consequently, TIR has 
proved to be unreliable for materials identification. Thus we are forced to consider ways 
to achieve materials identification through reflectance spectroscopy, which requires some 
sort of illumination source. 
 
The simplest approach would be to utilize active illumination, either narrowband or 
broadband. Narrowband sources include laser diodes and traditional LEDs. A company 
called Luxeon manufacturers half-Watt LEDs that are approximately 25% efficient. They 
are available at the following wavelengths: 0.532, 0.570, 0.590, 0.610, 0.620, and 
0.630µm. A company called AND corporation manufacturers an LED that operates at a 
wavelength of 0.8µm. One could consider sequencing LEDs of different wavelengths in 
time and utilizing a single-channel camera with broadband sensitivity. The result would 
be an active multispectral nighttime system with no moving parts. 
 
Broadband sources include ordinary light bulbs, flash technology, and perhaps the more 
recent LED technology that utilizes an exciplex of blue-emitting organic molecules to 
produce broadband light [20]. 
 
An interesting alternative would be to utilize ambient nighttime illumination in the form 
of moonlight or starlight. Gen. III image intensifiers have usable response over a 
wavelength range of at least 0.5µm to 0.8µm. This response range is sufficient to support 
CIR multispectral processing. However, filters would have to be introduced to split the 
received light into bands. This would reduce the number of photons received per unit 
time at the sensor. This means that substantial integration times might be required to 
obtain sufficient light to perform materials identification. 
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A small amount of active illumination, perhaps using LEDs at specific wavelengths, 
could be used in conjunction with the image intensifier to reduce integration times and 
eliminate the need for optical filters at the receiver. 
 
Finally, a multispectral laser radar could be developed for day/night CIR spectral analysis 
using laser diodes that are alternately pulsed at the desired frequencies. 
 
 
Conclusions 
A number of system concepts have been presented for using multispectral and 
hyperspectral sensing for materials identification to facilitate autonomous vehicle 
navigation. Potential advantages of materials identification include recognizing and 
avoiding plant species that tend to snag small robotic vehicles, avoiding hidden water 
hazards by recognizing plant species that grow at water’s edge, and exploiting potential 
paths below tree species that tend to suppress undergrowth. There may also be utility in 
identifying road paving materials for road following. 
 
The simplest concepts utilize CIR sensors to obtain multispectral data at a small number 
of wavelengths in the VIS and NIR bands. Materials can be categorized to some extent 
using three wavelengths in the visible and one wavelength in the NIR.  
 
A number of metrics have been reported in the literature for distinguishing various 
characteristics of vegetation. The most common metric is the normalized difference 
vegetation index (NDVI). The NDVI is computed from reflectance measurements at 
visible red and NIR wavelengths using CIR, multispectral, or hyperspectral data. A 
strong positive NDVI value indicates the presence of photosynthetic plant material and 
can separate such material from a variety of other materials. Nonphotosynthetic or 
senesced plants exhibit lower NDVI values due to absent or reduced chlorophyll 
absorption in the visible spectral range, and are difficult to distinguish from other 
material classes. Other normalized difference indices include ones that compare 
reflectance in the green to red region (NDGR), and the blue to red region (NDBR). The 
NDGR metric can be used to separate leaves and needles from limbs and bark among 
photosynthetic vegetation. The NDBR metric can be used for separating paving materials 
from roadside materials for on-road navigation. 
 
CIR sensing can only separate materials into broad categories. However, when spectral 
analysis is used in conjunction with texture analysis, detailed materials identification can 
be performed. For example, texture analysis of CIR data can identify plant species by 
their shape and structure. Spectral analysis of CIR data can also facilitate object 
segmentation by separating the boundaries of photosynthetic vegetation from background 
materials. 
 
Object segmentation is perhaps the most difficult task. Range and scale information 
obtained by either stereoscopic video sensors or by laser radar is helpful if not essential 
for robust segmentation, and for determining navigability in general. 
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Multispectral sensors that utilize 5-20 wavelengths can do a better job than CIR sensors 
at categorizing materials into broad categories. An example was shown using six 
wavelengths to separate all vegetation from virtually all other materials. Additional 
complexity is involved because the wavelengths were spread across the visible, NIR, and 
SWIR bands. Also, some of the features were narrowband, requiring finespectral sensing.  
Inexpensive silicon-based sensors can measure reflectance in the visible and NIR up to 
about 1µm. Beyond that wavelength, other sensor materials are required, and the sensors 
become more expensive. 
 
Hyperspectral sensors operating in the 0.4µm to 2.4µm wavelength range, demonstrate 
the potential to classify individual vegetation species. Additional data would be required 
to determine the bounds of within-class variations. Techniques were demonstrated for 
measuring reflectance properties in the presence of atmospheric variation. Atmospheric 
calibration was proposed in the form of a small device placed on the robotic vehicle that 
measures atmospheric aerosols and columnar water vapor. Such a device could measure 
atmospheric conditions with no more than 10% error. This might permit the utilization of 
standard laboratory reflectance spectra as exemplars for materials classification. 
 
Finally, some system design issues were addressed including sensor resolution, sensor 
configurations with and without complementary sensors, and day/night operation.  
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